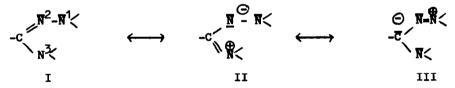
INVESTIGATIONS ON THE HINDERED ROTATION OF AMIDRAZONES

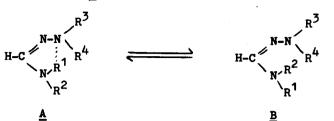

Wolfgang Walter * and Helmut Weiss Institute for Organic and Biochemistry, University of Hamburg, D-2000 Hamburg 13, Papendamm 6

(Received in UK 2 July 1974; accepted for publication 11 July 1974)

Introduction:

In a previous paper ¹⁾ the structure of $N^1.N^1.N^3$ -trisubstituted amidrazones (nomenclature of amidrazones see lit. ²⁾) has been discussed. IR-spectroscopic investigations have shown that these compounds exist only in the carbonic acid amide hydrazone form with a double bond between the carbon atom and the N^2 nitrogen atom. Another possible tautomeric carbonic acid hydrazide imide isomer could not be found. These results have recently been confirmed by other authors ³⁾.

Amidrazones are mesomeric systems, and like carboxylic acid amides they are planar due to the canonical formula II, which leads to a partial double bond character of the $C-N^3$ bond and, consequently, to a hindrance of internal rotation around this bond.


If rotamers exist in solution they can be detected by ¹HNMR spectroscopy and their rotation barriers ΔG^{\neq} can be calculated from the coalescence temperature T_{c}^{4} .

Results:

IR-spectroscopic investigations showed that especially formic acid amidrazones $\underline{1}$ exist in solution as two isomers, containing an intramolecular hydrogen bond

3010

$(\underline{\mathbf{A}})^{-1}$	(R ¹ =H)	and	(<u>B</u>)	not.
---------------------------------	---------------------	-----	--------------	------

No.	R ¹	R ²	R ³	R ⁴
<u>1a</u>	н	сн ₃	СН3	с ₆ н ₅
<u>1b</u>	Н	сн ₂ с ₆ н ₅	сн ₃	снз
<u>10</u>	́Н	сн ₂ с ₆ н ₅	CH(CH ₃) ₂	сн(сн ₃)2
<u>1d</u>	Ή.	сн ₂ с ₆ н ₅	сн ₂ с ₆ н ₅	сн ₂ с6н5
<u>1e</u>	Н	^{Сн₂С₆н₅}	сн _з	с ₆ н ₅
11	н	pyridyl-2	сн ₃	снз
<u>1</u> g	H	pyridy1-2	сн ₃	с ₆ н ₅
2	сн _з	СН3	сн ₃	с ₆ н ₅

The results of the ¹HNMR spectroscopical measurements and evaluations are shown in table 1.

Due to the coupling of the protons of the N³-alkyl groups with the hydrogen atom, which prevented the measurement of the amidrazone <u>1d</u>, the result of the N³-deuterated are given additionally in order to confirm that the ΔG^{\neq} values are about equal for the N³-H and N³-D compounds.

Discussion:

The ΔG^{\neq} values are within the range of 14.5 to 15.6 kcal/mole for N³-alkyl substituted formic acid amidrazones. Those of N³-pyridyl-2 substituted amidrazones are significantly higher.

The tetrasubstituted amidrazone 2 shows a much lower ΔG^{\neq} value of 9.7 kcal/mole compared to <u>1a</u>, the difference being about 5 kcal/mole.

Table 2 shows that the hindered rotation in the trisubstituted amidrazones 1 is high, being comparable with those of N'-aryl amidines.

Table 1: Free activation enthalpies of the hindered rotation of some $N^1.N^1.N^3$ -trisubstituted formic amidrazones (<u>1</u>) and the tetrasubstituted formic amidrazone <u>2</u>

No.	R₂ ^{№2}	T _c (°C)	$\Delta \hat{V}$ (Hz)	ΔG^{\neq} (kcal/mole)	Solv.	Signal
<u>1a</u>	Н	5	5.5	14.9 <u>+</u> 0.2	CDC13	N ³ -CH ₃
	D	11	6.5	15.1 <u>+</u> 0.2	CDC13	N ³ -CH ₃
<u>1b</u>	н	0	6.5	14.5 <u>+</u> 0.2	CDC13	N ¹ -CH ₃
	н	10	10	14.8+0.2	CDC1	N ³ -CH ₂
	D	2.5	4.5	14.8 <u>+</u> 0.2	CDC13	N ⁷ -CH ₃
	D	10	8	14.9 <u>+</u> 0.2	CDC13	N ³ -CH ₂
<u>1c</u>	н	23	8	15.6 <u>+</u> 0.2	CDC13	N ³ -CH ₂
	D	20	7.5	15.5 <u>+</u> 0.2	CDC13	N ³ -CH ₂
<u>1d</u>	D	11.5	6	15.2 <u>+</u> 0.2	CDC13	N ¹ -CH ₂
<u>1e</u>	н	13	11	14.9 <u>+</u> 0.2	CDC13	N ³ -CH ₂
	н	7	7	14.8 <u>+</u> 0.2	CDC13	N'-CH ₃
1	D	16.5	12	15.0 <u>+</u> 0.2	CDC13	N ³ -CH ₂
	D	10.5	7	15.0 <u>+</u> 0.2	CDC13	N ¹ -CH ₃
<u>11</u>	н	59	12	17.4 <u>+</u> 0.2	CHBr3	N ¹ -CH ₃
<u>1g</u>	н	61	12	17.5 <u>+</u> 0.2	CHBr3	N ¹ -CH ₃
2	сн ₃	-86	9	9.7 <u>+</u> 0.2	HDA ^{a)}	N ³ -CH ₃

a) Hexadeuteroacetone

Table 2: Free activation enthalpies of N.N-dimethyl formic amide derivates

$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	Compound	ΔG^{\neq} (kcal/mole)	Solvent	Lit.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HCS-N(CH ₃) ₂	- 24.1	o-C6H4C12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21.0	w/o a)	
$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$N-\langle -\rangle -R R=NO_2$	15.9	CDC13	7)
N(CH ₃) ₂	N(CH ₃) ₂ R-CH ₃	14.1	CDC13	7)
N_N ~CH ₃	N(CH ₃) ₂	12.4	Pyridine	8)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$HC \bigvee_{N(CH_3)_2}^{N-N} \bigvee_{CH_3}^{CH_3}$	9.7	CD3COCD3	х р)

a) w/o = without solvent

The higher ΔG^{\neq} values of the trisubstituted amidrazones <u>1a-1g</u> compared with the tetrasubstituted compound <u>2</u> might be explained by the effect of intra-(isomer A) or intermolecular (isomer B) hydrogen bonding. The difference of about 5 kcal/mole, however, is much higher than that found in similar systems, e. g. thiohydroxamid acids, o-halogenphenols, where the additional energies caused by hydrogen bonds are about 2 kcal/mole ^{9),10),11)}. In fact, besides the influence of hydrogen bonding, the barrier to internal rotation in <u>2</u> compared with <u>1a-1g</u> may be further lowered by steric interactions between the N³-methyl groups and the amino group on N² in the planar ground state. The ΔG^{\neq} value of <u>2</u> is further lowered by a stronger contributation of the canonical formula III to the ground state. In <u>1a-1g</u> hydrogen bonding involving the lone electron pair on the N¹-atom will diminish the importance of III.

Similarly, the difference of about 3 kcal/mole between $\underline{2}$ and trialkyl substituted amidines (table 2) is believed to result from the interaction of the lone electron pair of the amidrazone's N¹-nitrogen and the amidine system of $\underline{2}$ according to the canonical formula III in $\underline{2}$. It accounts for the lower ΔG^{\neq} value of $\underline{2}$ compared to N,N-dimethyl-N'-tert.-butyl-formamidine (table 2) contrary to the canonical formula II which is responsible for the hindered internal rotation around the C-N³ bond.

References

1.	₩.	Walter	and	H.	Weiss,	Liebigs	Ann.	Chem.	758,	162	(1972)	۱.
----	----	--------	-----	----	--------	---------	------	-------	------	-----	--------	----

- 2. H. Rapoport and R. M. Bonner, <u>J. Amer. Chem. Soc. 72</u>, 2783 (1950).
- 3. R. F. Smith, D. S. Johnson, R. A. Abgott, and M. J. Madden,
- J <u>J. Org. Chem.</u> <u>38</u>, 1344 (1973).
- J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High Resolution Nuclear Magnetic Resonance", New York, 1959.
- 5. T. H. Siddall III, W. E. Stewart, and F. D. Knight, <u>J. Phys. Chem.</u> <u>74</u>, 3580 (1970).
- 6. M. Rabinovitz and A. Pines, <u>J. Amer. Chem. Soc. 91</u>, 1585 (1969).
- 7. D. J. Bertelli and J. T. Gerig, <u>Tetrahedron Lett.</u> 1967, 2481.
- 8. D. L. Harris and K. M. Wellman, <u>Tetrahedron Lett.</u> 1968, 5225.
- 9. E. A. Allen and L. W. Reeves, J. Phys. Chem. 66, 613 (1962).
- 10. W. Walter and E. Schaumann, Liebigs Ann. Chem. 743, 154 (1971).
- 11. H. Weiss, Dissertation, University of Hamburg, 1972.